
CONDUIT ÉLECTRIQUE ET DE COMMUNICATIONS

SYSTÈMES ÉLECTRIQUES

CONDUIT ÉLECTRIQUE ET DE COMMUNICATIONS

- Léger
- Grandes longueurs avec extrémités à emboîture
- Flexible

Nous fabriquons des produits résistants pour des environnements difficiles^{MD}

CONDUIT ÉLECTRIQUE ET DE COMMUNICAT

LE PREMIER CONDUIT sur le marché

Premier conduit à avoir été mis sur le marché, le SuperDuct™ de IPEX est spécialement étudié et fabriqué en vue de procurer la haute résistance aux chocs et à l'écrasement aujourd'hui exigée par les entreprises de services publics pour leurs installations de conduits souterrains.

Fabriqué à partir d'un composé spécialement formulé, le SuperDuct résiste à des charges physiques élevées, tout en offrant suffisamment de flexibilité pour le cintrage sur place, nécessaire en cas de changement léger d'élévation ou de

direction. De plus, le SuperDuct facilite le tirage des

câbles grâce à sa paroi intérieure lisse.

Offert dans les diamètres de 2 à 6 po et livré en longueurs de 10 ou 20 pi, le SuperDuct est muni d'extrémités à emboîture facilitant l'assemblage sur le site au moyen des colles à solvant ou des manchons à ajustement serré en polyéthylène IPEX. Le SuperDuct est conforme aux exigences de la norme CSA C22.2 n° 211.1 concernant l'encastrement dans le béton et l'enfouissement direct dans le sol.

SUPER DUCT DIMENSIONS

Diam nom			ètre int. nimal	Épais nom			tre ext. yen
ро	mm	ро	mm	ро	mm	ро	mm
2	50	2,001	50,83	0,082	2,08	2,250	57,15
3	75	3,000	76,20	0,097	2,46	3,250	82,55
3 1/2	90	3,480	88,39	0,109	2,77	3,730	94,74
4	100	3,941	100,10	0,120	3,05	4,216	107,09
5	125	4,974	126,34	0,153	3,89	5,299	134,60
6	150	5,896	149,76	0,180	4,57	6,275	159,39

MARCHÉS

- COMMUNICATIONS
- TÉLÉCOM
- CÂBLE
- COMPLEXES HOSPITALIERS / MÉDICAUX
- ÉDIFICES COMMERCIAUX
- ENTREPRISES DE SERVICES PUBLICS

AVANTAGES

LÉGER

Super Duct se transporte et s'installe facilement, ce qui réduit les besoins et les coûts de main-d'œuvre.

LONGUEURS PLUS GRANDES

Super Duct est offert en longueurs de 10 pi (3 m) et 20 pi (6,1 m), ce qui réduit le nombre de raccordements nécessaires.

EXTRÉMITÉS À EMBOÎTURE

Super Duct est muni d'extrémités à emboîture, ce qui facilite l'assemblage au chantier.

HAUTE RÉSISTANCE À LA COMPRESSION

Le composé spécialement formulé du Super Duct a été conçu pour résister à des charges élevées.

FAIBLE COEFFICIENT DE FROTTEMENT

La paroi intérieure lisse du Super Duct facilite le tirage des câbles et élimine les coûts reliés aux dommages éventuels.

CONTRÔLE DE LA QUALITÉ

Des essais rigoureux effectués en continu assurent une haute qualité du produit Super Duct, et ce, sur une base permanente.

CINTRAGE SUR LE SITE

La flexibilité naturelle du Super Duct permet un cintrage au chantier, ce qui permet d'absorber les changements légers d'élévation ou de direction.

CATALOGUE DE PRODUITS

CONDUIT SUPER DUCT

CSA Type II – longueurs de 10 pi à emboiture

Diamètre (po)	Code de produit	pi/caisse	Poids/100 pi (lb)
2	008220	2 460	33,7
3	008230	1 120	61,2
3 1/2	008235	810	77,3
4	008240	630	99,2
5	008250	430	159,6
6	008260	280	226,6

CSA Type II – longueurs de 20 pi à emboiture

2	008221	4 920	33,7
3	008231	2 240	61,2
3 1/2	008236	1 620	77,3
4	008241	1 260	99,2
5	008251	860	159,6
6	008261	560	226,6

CSA Type II – conduit avec fente

Diamètre (po)	Code de produit	pi/caisse	Poids/100 pi (lb)
2	008222	2 460	
3	008232	1 120	61,2
3 1/2	008237	810	77,3
4	008242	630	99,2
5	008252	430	159,6
6	008262	280	226,6

RACCORDS SUPER DUCT

Coudes à 90° à très long rayon

	occuse a re-a a congression				
Diamètre (po)	Nº de pièce	Code de produit			
2 x 24 R	902024	029091			
2 x 36 R	902036	029092			
2 x 60 R	902060	029036			
3 x 24 R	903024	029055			
3 x 36 R	903036	029093			
3 x 60 R	903060	029134			
3 1/2 x 24 R	903524	029123			
3 1/2 x 36 R	903536	029094			
3 1/2 x 60 R	903560	029135			
4 x 24 R	904024	029047			
4 x 36 R	904036	029095			
4 x 60 R	904060	029096			
5 x 42 R	905042	029097			
5 x 60 R	905060	029037			
6 x 60 R	906060	029098			

Coudes à 45° à très long rayon

Coddes a 45 a tre	coudes a 45 a fres long rayon			
2 x 24 R	452024	029111		
2 x 36 R	452036	029112		
3 x 24 R	453024	029082		
3 x 36 R	453036	029113		
3 1/2 x 36 R	453536	029114		
4 x 24 R	454024	029128		
4 x 36 R	454036	029115		
4 x 60 R	454060	029116		
5 x 42 R	455042	029117		
6 x 60 R	456060	029118		

Coudes à 22 1/2° à très long rayon

3 x 36 R	223036	029085
4 x 36 R	224036	029204
5 x 42 R	225042	029249

CATALOGUE DE PRODUITS

RACCORDS SUPER DUCT

Manchons à coller

Diamètre (po)	Nº de pièce	Code de produit
2	SWC020	029001
2 (long)	SWC020L	029009
3	SWC030	029002
3 1/2	SWC035	029003
4	SWC040	029004
5	SWC050	029005
6	SWC060	029006

Manchons en polyéthylène – type pousser-raccorder*

2	PFC020	029011
3	PFC030	029012
3 1/2	PFC035	029013
4	PFC040	029014
5	PFC050	029015
6	PFC060	029016

^{*} Convient seulement aux installations par encastrement dans le béton

Manchons 5° – à coller au solvant

i idilionionio o	a concrata contain	
2	5ACS20	029041
3	5ACS30	029042
3 1/2	5ACS35	029043
4	5ACS40	029044
5	5ACS50	029045
6	5ACS60	029046

Manchons 5° en polyéthylène – type pousser-raccorder*

2	SAPF20	029020
3	5APF30	029030
3 1/2	5APF35	029502
4	5APF40	029998
5	5APF50	029050

^{*} Convient seulement aux installations par encastrement dans le béton

Manchons de réduction – à coller au solvant

3 x 2	RC3020	029021
3 1/2 x 2	RC3520	029039
$31/2 \times 3$	RC3530	029022
4 x 2	RC4020	029023
4 x 3	RC4030	029024
4 x 3 1/2	RC4035	029025
5 x 4	RC5040	029026
6 x 4	RC6040	029027

RACCORDS SUPER DUCT

Tés en Y avec fente - à coller au solvant

1/6	
	P
	David Control

100 011 1 0100 10110	a contra da contra	
Diamètre (po)	Nº de pièce	Code de produit
2	SPLY20	029463
3	SPLY30	029052
3 1/2	SPLY35	029053
4	SPLY40	029054

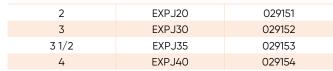
Extrémités à emboîture en PVC

4	

2	BELL20	029061
3	BELL30	029062
3 1/2	BELL35	029063
4	BELL40	029064
5	BELL50	029065
6	BELL60	029066

Extrémités à emboîture terminator avec bouchon défonçable

3	TERM30	029826
3 1/2	TERM35	029523
4 (avec perf)	TERM40H	029822
4 (sans perf)	TERM40W	029827


Bouchons femelles – à coller au solvant

2	SWCA20	029071
3	SWCA30	029072
3 1/2	SWCA35	029073
4	SWCA40	029074
5	SWCA50	029075
6	SWCA60	029076

Joints de dilatation

Bouchon mâle conique

2	PLUG20	029131
3	PLUG30	029132
3 1/2	PLUG35	029133
4	PLUG40	029078
5	PLUG50	029079
6	PLUG60	029136

CATALOGUE DE PRODUITS

RACCORDS SUPER DUCT

Comp

Bouchons universels

Diamètre (po)	Nº de pièce	Code Informatique
2 et 21/2	UPP35	029386
3 et 3 1/2	UPP45	029387
4	UPP55	029388
5	UPP60	029389
6	UPP65	029390

Adaptateurs femelles

2	FEMA20	029141
3	FEMA30	029142
3 1/2	FEMA35	029143
4	FEMA40	029144
5	FEMA50	029145
6	FEMA60	029146

Manchons de réduction adaptateurs – ciment-amiante ou goudron de houille et fibre de cellulose

3 x 2	ARIG3020	029191
4 x 2	ARIG4020	029192
4 x 3	ARIG4030	029187

Adaptateurs de conduit à gaine

2	ARIG20	029181
2 (long)	ARIG20L	029188
3	ARIG30	029182
3 1/2	ARIG35	029183
4	ARIG40	029184
5	ARIG50	029185
6	ARIG60	029186

Note : adaptateurs de gaine à conduit en résine thermodurcissable renforcée (RTRC) offerts sur demande

MODÈLES DE SPÉCIFICATIONS

Produit

Le conduit utilisé doit être le Super Duct IPEX ou un équivalent approuvé. Le conduit, les raccords et les entretoises monoblocs et la colle à solvant doivent être fournis par le même fabricant afin d'assurer l'intégrité du système.

Le conduit doit être fixé mécaniquement au moyen d'entretoises monoblocs et à verrouillage vertical IPEX pour éviter toute modification de l'alignement durant l'installation.

Marquage

Le conduit doit être identifiable en ce qui a trait au type et au fabricant et doit faire l'objet d'une traçabilité concernant l'usine, la date, le quart de travail et la machine utilisée pour la fabrication.

Matériau

Un conduit utilisé dans une installation souterraine, encastrée ou par enfouissement direct doit être fabriqué à partir d'un composé de PVC comportant des modificateurs inertes lui conférant un haut module d'élasticité, une meilleure résistance aux intempéries et une aptitude à la déflexion.

Normes

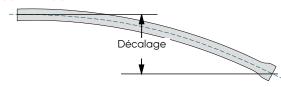
Les conduits et raccords doivent être certifiés selon la norme CSA C22.2 n° 211.1 et installés en conformité avec le Code canadien de l'électricité, partie 1, règles 12-1150 à 12-1166.

DONNÉES D'INGÉNIERIE

LE % DE DÉFLEXION DE SUPER DUCT IPEX DANS LES INSTALLATIONS PAR ENFOUISSEMENT DIRECT EST ÉTABLI POUR UNE CHARGE MAXI DE ROUE DE 87,5 KN SELON LA NORME CAN/CSA S6-06.

Pierre	0.5 0.4
Classe I	0.5 0.4
Classe I	0,5 0,4
Pierre 90 % 2 1,1 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0.5 0.4
Solution	0,5 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,5 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,7 0,6 0
Pierre 90 % 2 1,1 0,7 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Pierre concassée et particules fines Pierre Re	0,7 0,6 0,6 0,6 0,6 0,6 0,5 0,6 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6
concassée et particules fines E' = 2000 psi 3,5 1,1 0,8 0,6	0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,8 0,6 0,6 0,6 0,6 0,6 0,6
et particules fines 2 000 psi 3,5 1,1 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6
Classe II 4 1,1 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	
S 1,1 0,8 0,6	00 04 04 04 04 04 07 07
Sable et gravier 80 % 2 2 1,3 1,3 1,1 1 1 1,1 1,1 1,1 1 Classe II 1000 psi 3,5 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1 4 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1	0,8 0,6 0,6 0,6 0,6 0,6 0,6
Sable et gravier E' = 3 2,2 1,5 1,2 1,1 1,1 1,1 1,1 1,2 1,1 1,0 1,0 1,1 1,1 1,2 1,1 1,0 1,0 1,1 1,1 1,2 1,1 1,0 1,1 1,1 1,1 1,2 1,1 1,1 1,1 1,1 1,1 1,2 1,1 1,1	0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6
Glasse II E' = 3 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1 1 1000 psi 3,5 2,2 1,5 1,2 1,1 1,1 1,1 1,1 1,2 1,1 4 2,2 1,5 1,2 1,1 1,1 1,1 1,1 1,2 1,1	0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6
Classe II 1000 psi 3,5 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1 4 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1	1,3 1,1 1 1 1 1,1 1 1,1
4 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1	1,5 1,2 1,1 1,1 1,1 1,2 1,1 1,2
	1,5 1,2 1,1 1,1 1,1 1,2 1,1 1,2
5 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1	1,5 1,2 1,1 1,1 1,1 1,2 1,1 1,2
	1,5 1,2 1,1 1,1 1,1 1,2 1,1 1,2
6 2,2 1,5 1,2 1,1 1,1 1,1 1,2 1,1	1,5 1,2 1,1 1,1 1,1 1,2 1,1 1,2
Sable et 85 % 2 3,3 2,2 1,8 1,7 1,7 1,7 1,8 1,6	2,2 1,8 1,7 1,7 1,8 1,6 1,8
gravier avec particules E' = 3 3,9 2,7 2,2 2 2 2,2 2	2,7 2,2 2 2 2 2,2 2 2,2
500 poi	2,7 2,2 2 2 2,2 2 2,2
Classe III 4 4 2,7 2,2 2 2 2,2 2	2,7 2,2 2 2 2,2 2 2,2
5 4 2,7 2,2 2 2 2,2 2	2,7 2,2 2 2 2,2 2 2,2
6 4 2,7 2,2 2 2 2,2 2	2,7 2,2 2 2 2 2,2 2 2,2
Limon et argile 85 % 2 3,8 2,6 2,1 1,9 1,9 1,9 2,1 1,9	2,6 2,1 1,9 1,9 1,9 2,1 1,9 2,1
	3,2 2,6 2,4 2,4 2,4 2,6 2,3 2,6
400 psi 3,5 4,7 3,2 2,6 2,4 2,4 2,4 2,6 2,4	3,2 2,6 2,4 2,4 2,4 2,6 2,4 2,6
4 4,8 3,2 2,7 2,5 2,5 2,5 2,7 2,4	3,2 2,7 2,5 2,5 2,5 2,7 2,4 2,7
5 4,8 3,2 2,7 2,5 2,5 2,5 2,7 2,4	3,2 2,1 2,3 2,3 2,1 2,4 2,1
6 4,8 3,2 2,7 2,5 2,5 2,5 2,7 2,4	

SUPER DUCT (TYPE DB-2)


Description	Exigences CSA	Référence
Rigidité à 5%	43,5 psi (300 kPa)	CSA C22.2 No. 211.1
Résistance à l'écrasement	198 lb. à 73 °F (90 kg à 23 °C) déflexion résiduelle de 10 % max	CSA C22.2 No. 211.1
Résistance à aux chocs	45 pi•lbf à 73°F (61 J à 23°C) 25 pi•lbf à 0°F (34 J à -18°C)	CSA C22.2 No. 211.1
Contrainte résiduelle	149 °F (65 °C) pendant 4 heures Laisser refroidir à 73 °F (23 °C) 0,5 % de retrait maximum	CSA C22.2 No. 211.1
Étanchité des joints	Pression d'eau interne de 5 psi (35 kPa) durant 24 heures	CSA C22.2 No. 211.1

Note : Super Duct satisfait aux exigences des normes CSA ou les dépasse.

CINTRAGE SUR PLACE

Le cintrage sur place permet d'absorber les changements légers d'élévation ou de direction sans avoir à utiliser de coudes à très long rayon ou de raccords spéciaux. Le tableau suivant indique le décalage maximal généralement obtenu par cintrage à froid.

VALEUR DE DÉCALAGE ADMISSIBLE POUR SUPER DUCT

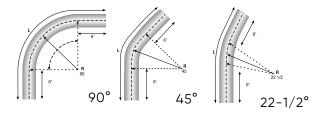
Diam	ètre	Décalage max. longueur de 10 pi (3 m)		longueur (ge max. de 20 pi (6,1 n)
ро	mm	ро	mm	ро	mm
2	50	20	508	79	2 007
3	75	14	356	56	1 422
3 1/2	90	12	305	49	1 2 4 5
4	100	11	279	43	1 092
5	125	7	178	35	889
6	150	7	178	29	737

NOTES

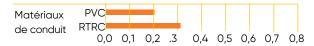
- 1. Aucune déflexion axiale ne doit être prévue aux joints.
- Les valeurs ci-dessus sont établies à une température ambiante supérieure au point de congélation. Il peut falloir augmenter le rayon à une température inférieure au point de congélation.

COUDES

Les coudes à 90 °, 45 ° et 22 $\frac{1}{2}$ ° sont offertsdans les diamètres de 2 po à 6 po (50 mm à 150 mm) avec des rayons de 24, 36, 42 et 60 po. Tous les coudes sont fournis avec une tangentes de 6 po (15,2 cm). La longueur de pose suivant l'axe (L) peut être calculée comme suit;


tangente= 6 po

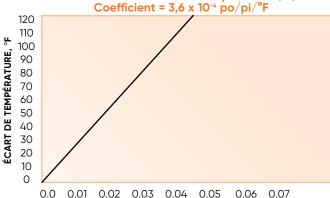
Exemple : pour un coude à 90° de 3 po avec rayon de 36 po, calculer la longueur de pose :


$$L = \left(3,14 \times 36 \times \frac{90^{\circ}}{180^{\circ}}\right) + 2 (6)$$

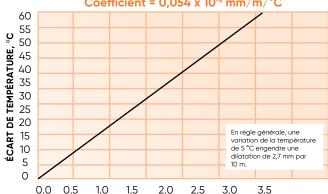
$$L = 69 po$$

L(mètres) =
$$\frac{\text{L impérial}}{12 \times 3,281} = \frac{.69 \text{ po}}{39,37} = 1,75 \text{ m}$$

COEFFICIENT DE FROTTEMENT STATIQUE


DILATATION ET CONTRACTION

Les précautions suivantes doivent être prises lorsque l'on prévoit de très grandes variations de température lors de la pose du Super Duct.


- Prévoir une longueur supplémentaire de conduit à chaque point de raccordement pour absorber la contraction lorsque la température du conduit est supérieure à celle du sol. Prévoir un espace supplémentaire pour la dilatation si l'inverse se produit (température du conduit inférieure à celle du sol).
- 2. Remblayer depuis le point de raccordement jusqu'à l'extrémité du tronçon de conduit.

Le coefficient de dilatation thermique du Super Duct IPEX de 3×10^{-5} po/po/°F (5,4 x 10^{-5} mm/mm/°C). Ces graphiques montrent la dilatation en fonction de la température pour un conduit non retenu.

Variation de longueur d'une tuyauterie en PVC par suite de la variation de température (°F)

Variation de longueur d'une tuyauterie en PVC par suite de la variation de température (°C) Coefficient = 0,054 x 10⁻⁵ mm/m/°C

INSTALLATION

1

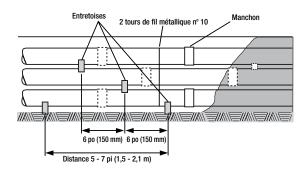
INSTALLATION DE CONDUITS ENCASTRÉS DANS LE BÉTON

Dans une nappe de conduits pour câbles électriques et de communications à usages multiples, l'espacement entre conduits est de la plus haute importance pour des performances optimales. IPEX a conçu des systèmes d'entretoises monoblocs et à verrouillage vertical pour satisfaire aux exigences de toutes les spécifications et installations sur place.

Ces entretoises légères permettent d'obtenir la séparation verticale et horizontale voulue dans une tranchée.

Les entretoises étant en place sur le fond de la tranchée, poser le premier étage de conduits. Lorsqu'on utilise une base de béton, poser l'étage du bas avant que la base n'ait commencé à prendre. Mettre en place les étages suivants d'entretoises sur le dessus de l'étage jusqu'à ce que le nombre voulu de conduit ait été installé. Attacher ensuite l'ensemble. Il n'est pas nécessaire de lester la nappe ni de la supporter par des contreventements, à moins que le mélange de béton ne soit très humide.

COULÉE DU BÉTON


Ne pas déverser une grande quantité de béton directement sur le conduit. S'il y a un risque, diriger le béton par les côtés de la nappe jusqu'au fond de la tranchée. Le béton remonte alors par le centre de la nappe et s'élève en remplissant uniformément les espaces libres. Il est possible d'éliminer les vides en déplaçant avec soin, de haut en bas et de bas en haut, une barre ou une spatule plate entre les rangées verticales de conduits. Le béton devrait alors s'écouler entre les conduits et en dessous.

ÉLÉVATION DE LA NAPPE DE CONDUITS

Disposer les entretoises monoblocs en quinconce. Il est recommandé de positionner les entretoises à environ un cinquième de la longueur du conduit à partir de chaque extrémité. Les entretoises à verrouillage vertical doivent être espacées à un maximum de 5,5 pi (1,7 m).

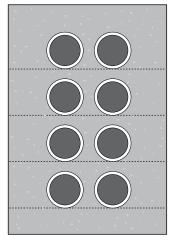
REMBLAYAGE

Remblayer la tranchée avec le matériau d'excavation lorsque le béton a durci.

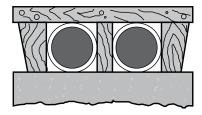
INSTALLATION COUCHE PAR COUCHE PAR ENCASTREMENT **DANS LE BÉTON**

Cette méthode a l'avantage de former une enveloppe de béton massive et sans vides. Couler chaque couche individuellement.

FOND DE LA TRANCHÉE


Après nivellement de la tranchée, mettre en place une fondation de 3 po (75 mm) de béton au fond. Elle doit être lisse et de niveau.

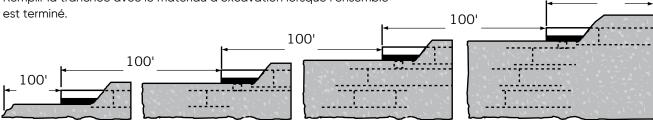
MONTAGE DES NAPPES DE CONDUITS


Poser la couche inférieure de conduits sur la base de béton. Espacer les conduits au moyen de blocs en bois munis de dents (genre peigne), à raison de deux par longueur de conduit. Bétonner la première couche jusqu'à la partie supérieure des blocs. Retirer les blocs et remplir les vides. Un léger damage permet d'obtenir une surface uniforme. Répéter cette séquence jusqu'à ce que toutes les nappes soient construites.

BÉTONNAGE

Lorsqu'on laisse le béton prendre avant d'assembler la couche suivante, celui-ci étant plus résistant et plus dense, les conduits s'alignent mieux. Le problème que pose cette méthode réside dans le fait que l'ensemble des nappes de conduits est formé d'une série de couches, avec un risque de gonflement et de séparation en cas de gel. Si les couches successives ont été posées avant la prise du béton, un damage du béton sec permet d'obtenir une adhérence satisfaisante.

Coupe transversale illustrant la méthode d'installation couche par couche



Exemple de bloc en bois muni de dents

100'

REMBLAYAGE

Remplir la tranchée avec le matériau d'excavation lorsque l'ensemble est terminé.

Un conduit se pose habituellement par sections de 100 pi (30 m) une fois la tranchée excavée. Il est par conséquent possible d'effectuer le bétonnage en continu.

INSTALLATION

INSTALLATION PAR ENFOUISSEMENT DIRECT

FOND DE LA TRANCHÉE

Le fond de la tranchée doit constituer un support continu, ferme et uniforme en vue de la construction des nappes de conduits. Faire attention de ne pas avoir de mottes, d'arêtes, de creux et de pierres formant des zones de contact « ponctuel » ou d'appui inégal.

ROC OU SCHISTE

Excaver sur 3 po (75 mm) de plus que la profondeur voulue et ramener la tranchée au niveau en remblayant avec de la terre sélectionnée. On obtient ainsi une surface de pose uniforme pour les conduits.

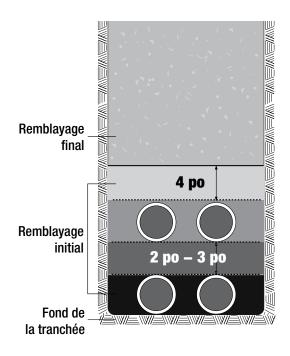
SOL INSTABLE

Des essais de résistance du sol doivent être réalisés dans les zones marécageuses. Ces endroits peuvent nécessiter un creusage plus profond et un remplissage par de la pierre concassée ou du gravier, ou encore l'emploi de mats, poutres ou encore d'une base de béton.

MISE EN PLACE DES CONDUITS

Après installation de la première nappe de conduits, remblayer et compacter selon les indications ci-dessous. Si des blocs en bois munis de dents ont été utilisés pour conserver l'espacement, les retirer au fur et à mesure du remblayage et du damage. Débuter ensuite la pose de la couche suivante.

REMBLAYAGE INITIAL


- 1. Remplir par les côtés et le centre jusqu'à la partie supérieure des conduits. Utiliser une dameuse manuelle pour un compactage ferme.
- Remblayer par-dessus les conduits à l'épaisseur exigée (voir note) et compacter fermement uniquement à l'aide d'une dameuse manuelle.

REMBLAYAGE FINAL

Jusqu'à une Lors de la mise en place de la dernière couche, remblayer à la main jusqu'à 4 po (100 mm) au-dessus des conduits avec de la terre qui ne contient pas de pierres de plus de 3/8 po (9 mm). Le damage manuel de cette couche est optionnel et dépend des spécifications.

À partir de là, le remblayage peut s'effectuer par damage manuel ou pneumatique par couches de 4 po à 12 po (100 à 300 mm), selon le degré de compaction voulu.

En cas de remblayage à la machine, éviter d'utiliser de grosses pierres tant qu'une couche de protection n'a pas été établie (minimum de 12 po ou 300 mm).

Note: dans une installation par enfouissement direct, aucune entretoise ne doit être utilisée avec le type 2; en effet, les entretoises forment des supports « ponctuels » au lieu du lit de pose continu exigé. L'épaisseur de remblayage entre les conduits est habituellement de 2 po à 3 po (50 mm à 75 mm).

COLLAGE AU SOLVANT

Après avoir coupé le Super Duct IPEX, ôter les arêtes vives et les bavures de l'intérieur du conduit avec un couteau. Nettoyer à fond l'extrémité du tuyau et l'intérieur du raccord avec un dispositif de nettoyage de tuyaux. Mettre une bonne couche de colle à solvant sur les deux surfaces; enfiler ensuite le conduit en donnant un quart de tour pour répartir la colle uniformément sur le matériau. Maintenir l'assemblage en place quelques secondes jusqu'à ce que le joint soit prêt.

Super Duct	Nombre de joints par litre
mm	(0,2 gal)
50	80
75	60
90	50
100	40
125	16
150	14
	50 75 90 100 125

Ces manchons facilitent l'assemblage rapide de longueurs coupées de conduit Super Duct encastré dans le béton. Pousser l'extrémité unie du conduit dans l'emboîture du raccord et frapper légèrement sur un morceau de bois posé sur l'extrémité du manchon ou du tuyau, jusqu'à ce que l'extrémité du conduit vienne en contact avec l'épaulement intérieur du raccord. Comme les manchons du type pousser-raccorder ne sont pas étanches à l'eau, on recommande de les utiliser uniquement lorsqu'ils sont encastrés dans du béton.

CONDUIT FENDU

Le conduit fendu IPEX représente la solution simple à l'installation autour de câbles existants et à la réparation de conduits existants, en évitant les coûteuses opérations de coupe et d'épissage des câbles.

VENTES ET SERVICES À LA CLIENTÈLE

Montréal

6665, chemin Saint-François Saint-Laurent, Québec H4S 1B6 Sans frais : (866) 473-9462 www.ipexna.com

À propos d'IPEX par Aliaxis

Étant à l'avant-garde des fournisseurs de systèmes de tuyauteries en thermoplastique IPEX par Aliaxis offre à ses clients l'une des gammes de produits les plus vastes et les plus completes au monde. La qualité des produits d'IPEX par Aliaxis repose sur une expérience de plus de 50 ans. Ayant son siège social à Montréal et grâce à des usines de fabrication de pointe et des centres de distribution à travers l'amérique du nord, nous avons établi une réputation d'innovation de produits, de qualité, d'attention portée a l'utilisateur final et de performance.

Les marchés desservis par des produits IPEX par Aliaxis sont :

- · Les systèmes électriques
- Les télécommunications et les systèmes de tuyauteries pour services publics
- Tuyaux et raccords en PVC, PVCC, PP, PVDF, PE, ABS et PEX
- · Les systèmes de tuyauteries de procédés industriels
- Les systèmes de tuyauteries pour installations municipales sous pression et à écoulement par gravité
- Les systèmes de tuyauteries mécaniques et pour installations de plomberie
- · Les systèmes par électrofusion pour le gaz et l'eau
- Les colles à solvant pour tuyauteries industrielles, de plomberie et électriques
- Les systèmes d'irrigation

Produits fabriqués par IPEX Electrique Inc.

SuperDuct^{™D} est une marque de commerce d'IPEX Branding Inc.

Cette documentation est publiée de bonne foi et elle est censée être fiable. Cependant, les renseignements et les suggestions contenus dedans ne sont ni représentés ni garantis d'aucune manière. Les données présentées résultent d'essais en laboratoire et de l'expérience sur le terrain.

Une politique d'amélioration continue des produits est mise en œuvre. En conséquence, les caractéristiques et/ou les spécifications des produits peuvent être modifiées sans préavis.

